
Consider a biomolecule having 𝑁 atoms with coordinates
given as 𝑟𝑖 𝑟𝑖 ∈ ℝ3, 𝑖 = 1,2, … ,𝑁 . Then commonly used FRI
correlation functions include the generalized exponential
functions will be

Φ𝜅,𝜏
𝐸 𝒓𝑖 − 𝒓𝑗 = 𝑒− ൗ𝒓𝑖−𝒓𝑗 𝜂𝑖𝑗

𝜅

, 𝜅 > 0

and the generalized Lorentz functions

Φ𝜐,𝜏
𝐿 𝒓𝑖 − 𝒓𝑗 =

1

1 + ൗ𝒓𝑖 − 𝒓𝑗 𝜂𝑖𝑗
𝜐 , 𝜐 > 0

where 𝜂𝑖𝑗 = 𝜏(𝑟𝑖 + 𝑟𝑗) and 𝑟𝑖 to be the van der Walls radius

of 𝑖th atom.
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Learning tasks often require dealing with graph data which
contains rich information among graph nodes. Graph Neural
Network (GNN) has become one of the most popular models
for learning from graph inputs in various fields such as
physics, chemistry, biology and linguistics. Our work focused
on protein-ligand binding affinity prediction by using
flexibility-rigidity index (FRI) of protein-ligand complexes as
graph inputs and training GNN hyper-parameters
automatically. We employ datasets CASF-2007 to validate the
Pearson correlation, robustness and reliability of our GNN
model.
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• We define element–specific protein-ligand rigidity index
by collecting cross correlations

𝑅𝐼𝛽,𝜏,𝑐
𝛼 𝑋 − 𝑌 = 

𝑘∈𝑋∈𝑃



𝑙∈𝑌∈𝐿

Φ𝛽,𝜏
𝛼 𝒓𝑘 − 𝒓𝑙 ,

with 𝒓𝑘 − 𝒓𝑙 ≤ 𝑐 . Here, 𝛼 = 𝐸, 𝐿 is kernel index, 𝑐 is
cutoff distance to reduce computational complexity. 𝑋
denotes heavy atoms 𝐶,𝑁, 𝑂, 𝑆 in the protein and 𝑌
denotes heavy atoms 𝐶,𝑁, 𝑂, 𝑆, 𝑃, 𝐹, 𝐶𝑙, 𝐵𝑟, 𝐼 in the ligand.
• This representation allows the multiresolution analysis of

protein-ligand binding interactions by varying hyper-
parameter 𝜏.

Figure1. FRI correlation functions, which behave like the 
ideal low filter (ILF) at large 𝜅 or 𝜐 values

• Although ANN can be implement to predict the binding
affinity for protein-ligand binding problems[1], it’s time
consuming to search all possible hyper-parameter 𝜏.

• We will consider to use FRI of protein-ligand complexes as
graph inputs and treat hyper-parameters 𝜏 as the
parameter in GNN to search the best 𝜏 automatically.

Why do we consider GNN?
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Figure2. Performance comparison between different 
methods on the PDBBind v2007 core set. The performance 
of other methods are adopted from ref [2].
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• By choosing 3 exponential kernels with 1 × 36 different 𝜏
in (2.5,15) as initial parameters, we can search the best 𝜏
by neural network automatically. After 2000 epochs, the
Pearson correlation coefficient on CASF-2007 is 0.781.

• We run our code on GPU and running time is about 6
hours.


