
Communications in Information and Systems

Volume 19, Number 3, 241–277, 2019

Generative network complex (GNC) for drug
discovery

Christopher Grow, Kaifu Gao,

Duc Duy Nguyen
∗
, and Guo-Wei Wei

†

It remains a challenging task to generate a vast variety of novel
compounds with desirable pharmacological properties. In this work,
a generative network complex (GNC) is proposed as a new platform
for designing novel compounds, predicting their physical and chem-
ical properties, and selecting potential drug candidates that fulfill
various druggable criteria such as binding affinity, solubility, parti-
tion coefficient, etc. We combine a SMILES string generator, which
consists of an encoder, a drug-property controlled or regulated la-
tent space, and a decoder, with verification deep neural networks,
a target-specific three-dimensional (3D) pose generator, and math-
ematical deep learning networks to generate new compounds, pre-
dict their drug properties, construct 3D poses associated with tar-
get proteins, and reevaluate druggability, respectively. New com-
pounds were generated in the latent space by either randomized
output, controlled output, or optimized output. In our demonstra-
tion, 2.08 million and 2.8 million novel compounds are generated
respectively for Cathepsin S and BACE targets. These new com-
pounds are very different from the seeds and cover a larger chem-
ical space. For potentially active compounds, their 3D poses are
generated using a state-of-the-art method. The resulting 3D com-
plexes are further evaluated for druggability by a championing deep
learning algorithm based on algebraic topology, differential geom-
etry, and algebraic graph theories. Performed on supercomputers,
the whole process took less than one week. Therefore, our GNC is
an efficient new paradigm for discovering new drug candidates.

1. Introduction

Drug design and discovery ultimately test our understanding of biological
sciences, the status of biotechnology, and the maturity of computational sci-
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ences and mathematics. Technically, drug discovery involves target discov-
ery, lead discovery, lead optimization, preclinical development, three phases
of clinical trials, and finally, launching to market only if everything goes
well. Among them, lead discovery, lead optimization, and preclinical devel-
opment disqualify tens of thousands of molecules based on their binding
affinities, solubilities, partition coefficients, clearances, permeabilities, toxi-
cities, pharmacokinetics, etc., leaving only about ten compounds for clinical
trails. Currently, drug discovery is both expensive and time-consuming. It
takes about $2.6 billion dollars and more than ten years, on average, to bring
a new drug to the market [1]. Reducing the cost and speeding up the drug
discovery process are crucial issues for the pharmaceutical industry. Much
effort has been taken to optimize key steps of the drug discovery pipeline. For
example, the development of high-throughput screening (HTS) has led to
an unprecedented increase in the number of potential targets and leads [2].
HTS is able to quickly conduct millions of tests to rapidly identify active
compounds of interest using compound libraries [3].

While there has been an increase in the number of potential targets and
leads, the number of new molecular entities generated has remained stable
because of a high attrition rate during preclinical development and clinical
phases, caused by the selection of leads with inappropriate physicochemical
or pharmacological properties [4, 5]. Rational drug design (RDD) approaches
are proposed to better identify candidates with the highest probability of
success [6]. RDD aims at finding new medications based on the knowledge of
biologically druggable targets [1, 7]. Several empirical metrics, such as Lip-
inski’s rule of five (RO5) [8], were established for estimating druglikeness,
which describes the druggability of a substance with respect to factors like
bioavailability, solubility, toxicity, etc. Generally, the early selection of can-
didates requires the design of molecules complementary in shape and charge
to the target of interest, which leads to a high binding affinity. Additionally,
the determination of the nature and rates of physical/chemical/biological
processes that are involved in the absorption, distribution, metabolism, and
elimination (ADME) of drug candidates are also of primary importance.
ADME profiling and prediction are mostly dependent on molecular descrip-
tors such as RO5 [9]. Furthermore, cellular/animal disease models are typ-
ically used during lead optimization to measure various pharmacokinetics.
Finally, toxicity study is a primary task for preclinical development.

Recently, computer-aided drug design (CADD) has emerged as a useful
approach in reducing the cost and period of drug discovery [10]. Compu-
tational techniques have been developed for both virtual screening (VS)
and optimizing the ADME properties of lead compounds. Essentially, these
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methods are designed as in silico filters to eliminate compounds with un-
desirable properties. These filters are widely applied for the assembly of
compound libraries using combinatorial chemistry [11]. The integration of
early ADME profiling of lead chemicals has contributed to the speed-up of
lead selection for phase-I trials without large amounts of revenue loss [12].
Currently, compounds are added in libraries on the basis of target-focused
design or diversity considerations [13]. VS and HTS can screen compound
libraries to select a subset of compounds whose properties are in agreement
with various criteria [14].

Despite these efforts, the current size of databases of chemical com-
pounds remains small when compared with the chemical space spanned by
all possible energetically stable stoichiometric combinations of atoms and
topologies in molecules. Considering these factors, it is estimated that there
are 1060 distinct molecules. Among them, 1030 are druglike [3]. As a result,
computational techniques are also being developed for the de novo design
of druglike molecules [15] and for generating large virtual chemical libraries,
which can be more efficiently screened for in silico drug discovery.

Among the computational techniques available, deep neural networks
(DNN) have gained much interest for their ability to extract features and
learn physical principles from training data. Currently, DNN-based archi-
tectures have been successfully developed for applications in a wide variety
of fields in the biological and biomedical sciences [16, 17].

More interestingly, several deep generative models based on variational
autoencoders (VAEs) [18], adversarial autoencoders (AAEs) [19], recurrent
neural networks (RNNs) [20], long short term memory networks (LSTMs)
[21] and generative adversarial networks (GANs) [22] have been proposed
for exploring the vast druglike chemical space. A policy-based reinforcement
learning approach was proposed to tune RNNs for episodic tasks [23, 24].
A VAE was used by Gomez-Bombarelli et al. [25] to encode a molecule
in the continuous latent space for exploring associated properties. The us-
age of these models has been extended to generate molecules with desired
properties [26]. Miha Skalic et al. [27] combined a conditional variational
autoencoder and a captioning network to generate previously unseen com-
pounds from input voxelized molecular representations. Artur Kadurin et
al. [28] built an AAE to generate new compounds. Boris Sattarov et al. [29]
combined deep autoencoder RNNs with generative topographic mapping to
carry out de novo molecular design.

It is particularly interesting and important to generate potential drug
candidates for specific drug targets. To this end, a network complex is re-
quired to fulfill various functions, including target-specific molecular gener-
ation, target-specific binding affinity ranking, and solubility and partition
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coefficient evaluation. In this work, we propose a generative network com-
plex (GNC) to combine drug-property controlled or regulated autoencoder
(AE) models and DNN predictors to generate millions of new molecules and
select potential drug candidates that have appropriate druggable properties.
Our GNC includes the following components:

1) Using known molecules in a target-specific training set as seeds, a
SMILES string generator is constructed to generate millions of novel
compounds. This generator consists of a CNN-based encoder, a drug-
property controlled or regulated latent space, and a LSTM-based de-
coder.

2) A pre-trained multitask DNN model is constructed to select drug can-
didates based on druggable properties.

3) A 3D structure generator, MathPose, to convert selected 2D SMILES
strings into 3D structures based on target receipt information.

4) A 3D multitask druggable property predictor, mathematical deep
learning (MathDL), to further select new drug candidates via various
druggable criteria.

Some of these components, namely MathPose and MathDL, have been ex-
tensively validated in blind settings [30, 31]. Our GNC can not only generate
new molecules, but also construct or pick up the molecules with ideal drug
properties. This makes it a very promising method for generating millions
of new drug candidates in silico in a very short time period.

2. Methods

2.1. The structure of generative network complex (GNC)

In the proposed GNC, the first component is a generative network includ-
ing encoder, drug-property regulated latent space, and decoder models. The
generative network will take a given SMILES string as input to generate a
novel one. The newly generated SMILES strings will be fed into the sec-
ond component of our GNC, a 2D fingerprint-based deep neural network
(2DFP-DNN), so that only ones with desired druggable properties are kept.
The next component is the MathPose model which is used to predict the 3D
structure information of the compounds selected by 2DFP-DNN. The bioac-
tivities of those compounds are again estimated by the structure-based deep
learning model named MathDL. The druggable properties predicted by this
last component of our GNC are used as an indicator to select the promising
drug candidates. The outline of the GNC is illustrated in Figure 1.
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Figure 1: A schematic illustration of a generative network complex. It con-
sists of an autoencoder that takes SMILES strings (SS) into a drug-property
regulated latent space, a regulated latent space, a LSTM-based autodecoder,
a multitask network for the evaluation of binding affinity, partition coefficient
(LogP), solubility (LogS), clearance, etc., a 3D structure generator named
MathPose, and MathDL, a refined 3D multitask druggable property predic-
tor based on algebraic topology, differential geometry, and graph theory, to
select new drug candidate structures.

2.1.1. Autoencoder An autoencoder is a type of artificial neural network
used to encode a set of data into vectors in the latent space. An autoencoder
is typically combined with a decoder to transform the encoded vectors back
into SMILES strings. In the present work, we propose a latent space tech-
nique which controls or regulates various drug properties, such as binding
affinity, solubility (LogS), partition coefficient (LogP), clearance, etc.

Encoder The encoder network in the present work is a convolutional neural
network (CNN) which takes converts SMILES strings into 3D molecular
images before encoding their into the latent space. It consists of five 3D-
convolutional layers. The number of output channels for each layer are 32,
32, 64, 64, 32, 32, 32, and 32 with kernel sizes all (1, 1, 1), respectively.
For the sake of visualization, the encoder’s architecture is outlined in Fig-
ure 2.
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Figure 2: Illustration of an autoencoder, which consists of a CNN-based
encoder, a regulated latent space, and a LSTM-based decoder.

In the present encoder, for each SMILES string, 3D conformers were

generated via RDKit [32] and optimized using the MMFF94 force field [33]
with default settings. Molecule atoms were then voxelized into a discretized

1 Å cubic grid with sides of length 24 Å prior to a random rotation and 2 Å

translation of the molecule. The voxelized value is determined by its atom
type and the distance r between neighboring atoms and its center:

(1) n(r) = 1− exp[−(rvdW/r)12],

where rvdW is the van der Waals radius.

The voxelized values of five types of properties are calculated: hydropho-

bic, aromatic, H-bond donors, H-bond acceptors, and heavy atoms, leading
to five different channels [27].

Latent space We propose three latent space regulation schemes, i.e., ran-

domized output, controlled output, and optimized output, to construct new
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compounds. First, to generate new compounds from seeds, random noise
can be added to the latent space. In other words, the encoded latent vectors
can be perturbed by standard Gaussian noise, rendering a possible new la-
tent representation. The resulting latent vector will be fed into the decoder
network.

Additionally, a more interesting control procedure is to select the la-
tent space output through a druggable property assessment. As shown in
Figures 1 and 2, we use the trained encoder to generate latent-space rep-
resentations of a dataset of interest, such as the BACE dataset. Based on
these representations of the dataset and its labels, we train deep learning
network models to evaluate and predict various druggable properties, in-
cluding binding affinities, solubility, partition coefficient, clearance, toxicity,
etc. In certain situations, we also build multitask deep learning models to
enhance latent-space evaluations. In this approach, each new compound in
its latent space representation is evaluated for its druggable properties to
determine whether it is to be fed into the decoder.

Finally, a more effective optimization scheme is to actively build new
drug candidates in the latent space representation with desirable properties
as shown in Figures 1 and 2. With appropriate training datasets, we first
construct m latent-space predictive machine learning models as described
above for m different properties, such as binding affinities, solubility, parti-
tion coefficient, clearance, etc. For each property, we set up a target value,
yj0. We then build an L2 loss function to optimize a given n-component
latent-space vector X ∈ R

n:

(2) min

m∑

j=1

kj(ŷj(X)− yj0)
2,

where kj is a preselected weight coefficient for the jth property and ŷj(X) :
R
n → R is the predicted jth property value of the latent-space vector X

from latent-space machine learning models. Alternatively, we also use other
metrics, such as L1 or mixed metrics for constructing the loss function.
The optimization with a gradient decent algorithm leads to an iterative
scheme for regularizing the latent-space vector X. Alternatively, a Monte
Carlo procedure can be implemented.

Target values yj0 can be chosen to optimize potential drugs. In case of
binding affinity (BA), we use a targeted value of yBA ≤ −9.6 kcal/mol.
For LogP, we set yLogP ≤ 5. Note that additionally constraints, such as,
similarity, Lipinski’s rule of five [8] or their variants for druglikeness can be
easily implemented with Eq. (2).
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Decoder The decoder network here consists of several LSTMs. LSTMs are
variants of RNNs that were proposed to handle language processing prob-
lems, which require the network to take into account the relationships be-
tween words rather than simply interpreting each word independently. RNNs
are designed to pass fixed-size pieces of information from one neuron to
others in the network. However, RNNs are not very effective at process-
ing information with long-term dependencies, as the persistence of informa-
tion within the network is somewhat short-lived. As a result, LSTMs were
designed to overcome this problem [21, 34, 35]. The encoder network was
trained in the shape encoder framework.

In each LSTM unit, there is a cell consisting of an input gate, an output
gate, and a forget gate which are described in the following equations

(3) Ht = ot ∗ tanh(Ct),

where ot depends on its input Xt and the output of the last layer Ht−1:

(4) ot = σ(Wo[Ht−1, Xt] + bo).

Here, σ is the activation function. Now, the cell state at the ith layer is given
by:

(5) Ct = ft ∗ Ct−1 + it ∗ Ĉt,

where Ĉt is the change of the cell state at the ith layer

(6) Ĉt = tanh(WC [ht−1, xt] + bC),

and ft and it are given by the following,

ft = σ(Wf [Ht−1, Xt] + bf )(7)

it = σ(Wi[Ht−1, Xt] + bi).(8)

The updated cell state, Ct, is then passed to the next layer along with
the output of the current layer and includes accumulated information from
all previous layers so that the network can handle long-term dependencies
between inputs.

The purpose of LSTMs in our case is to decode molecules from the
encoded vectors in the latent space. There is some variation in the decoding
process via the use of probabilistic sampling. Due to the LSTM’s ability to
handle long-term dependencies, it can learn SMILES grammar, and build
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SMILES strings by selecting the next token proportionally to its predicted
probability [27]. This means that some variation from the seed SMILES
string will occur. As a result, even when the input is the same, the output
will not always be the same. This causes the generated SMILES strings to
be different from their seeds. Our LSTM decoder has 5 layers as the same as
the number of layers of the aforementioned CNN encoder. The architecture
of the decoder is depicted in Figure 2. The Adam optimizer was applied with
the learning rate 0.001 and a batch size of 128 to minimize the following loss

(9) L = − 1

N

N∑

i=1

M∑

j=1

y
(i)
j log p

(i)
j ,

where y
(i)
j and p

(i)
j , respectively, represent the the ground-truth and the

predicted probability for component jth in the ith SMILES string. Also, N
is the number of samples in each batch and M is the length of the SMILES
string.

2.1.2. 2D fingerprint-based binding affinity predictors (2DFP-
DNN) The predictors are deep neural networks (DNN) pre-trained on
our own training sets. A DNN mimics the learning process of a biological
brain by constructing a wide and deep architecture of numerous connected
neuron units. A typical DNN often includes multiple hidden layers. In each
layer, there are hundreds or even thousands of neurons. During the learn-
ing stage, weights on each layer are updated by backpropagation. A deep
neural network is able to construct hierarchical features and model complex
nonlinear relationships.

The purpose of our DNN predictors is to predict the binding affinities
and other properties of the generated compounds and, based on that, screen
ideal drug candidates meeting our criteria. Binding affinity assesses a drug’s
binding strength to its target, which is one of the most important drug prop-
erties [36, 37]. The input of predictor networks is 2D molecular fingerprints.
In our case, a combination of ECFP [38] and MACCS [39] fingerprints were
used, yielding 2214 bits of features (2048 bits from ECFP and 166 bits from
MACCS) in total. The output of the network is the drug properties, such
as binding affinity, log P, and log S. During the training and prediction pro-
cesses, the SMILES strings of compounds were first transformed to their 2D
fingerprints and then fed into the network. The fingerprint transformation
from SMILES strings was conducted by RDKit [32].

With appropriate training data, we can construct multitask DNNs for
simultaneous predictions of binding affinity, log P, log S, and toxicity [40, 41].
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Figure 3: A schematic illustration of the MathDL for binding affinity pre-
diction in which the combination of several advanced mathematical repre-
sentations is integrated with sophisticated CNN models.

Our DNN predictor networks have 4 layers with 3000, 2000, 1000, and 500
neurons in each hidden layer, respectively. For training, we used stochastic
gradient descent with a momentum of 0.5. We trained each network for
2000 epochs with a mini-batch size of 4. We used a learning rate of 0.01 for
the first 1000 epochs and reduced it to 0.001 for the last 1000 epochs. Our
tests indicate that adding dropout or L2 decay does not necessarily increase
the accuracy of the networks, and as a consequence, we omitted these two
techniques. The DNN training and prediction are performed by Pytorch [42].

2.1.3. MathDL for energy prediction Our MathDL is constructed by
the integration of mathematical representation features and deep learning
networks to generate a powerful binding affinity predictor [30, 31]. Specif-
ically, the MathDL is the blend of intensively validated models based on
algebraic topology [43, 44, 45], differential geometry [46], and graph theory
[47, 48]. In these methods, algebraic topology model makes use of persis-
tent homology in multi-component and multi-level manners to character-
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ize protein-ligand complexes by topological invariants, i.e., Betti numbers
counting various dimensional holes. In the 3D space, we have Betti-0, Betti-
1, and Bett-2 which receptively counts the numbers of independent compo-
nents, recognizes numbers of rings, and accounts for the cavity information
[49, 50, 51]. Our previous work, we have shown that algebraic topology
network has outperformed other state-of-the-art methods in the classify-
ing proteins [43] and active/inactive compounds [44], and the predictions of
protein-ligand binding affinity [52, 44], toxicity [41], lop P, and log S [40].

Differential geometry describes how molecules assume complex struc-
tures, intricate shapes and convoluted interfaces between different parts [53].
In our differential geometry-based model, essential chemistry, physical, and
biological information are encoded into the low-dimensional interactive man-
ifolds which are extracted from high-dimensional data space via a multiscale
discrete-to-continuum mapping [54, 46]. Thereby, the molecular structures
and atomic interactions can be conveniently represented via interactive cur-
vatures, interactive areas, etc. Numerous numerical validations have shown
that the differential geometry model has achieved the state-of-the-art perfor-
mances on various biological prediction tasks, namely drug toxicity, molec-
ular solvation, and protein-ligand binding affinity [46].

Recently, we have developed a powerful algebraic graph-based scoring
function which encodes the important physical and biological properties
such as hydrogen bonds, hydrophilicity, hydrophobicity, van der Waals in-
teractions, and electrostatics from the high-dimension space into the low-
dimension description via the invariants extracted from Laplacian, its
pseudo-inverse, and adjacency matrices [48]. Algebraic graph theory-based
models have been widely utilized in the study of physical modeling and
molecular analysis such as chemical analysis [55, 56], protein flexibility anal-
ysis [57, 58, 59]. Despite its popularity, the graph-based quantitative models
typically are not as competitive as other quantitative approaches due to no
categorization on element types and the missing crucial non-covalent interac-
tions. This missing information has been encoded in multiscale weighted col-
ored subgraphs in our newly designed algebraic graph-based model, named
AGL-Score. Extensive numerical validation on PDBbind benchmarks with
various evaluation metrics, namely scoring power, ranking power, docking
power, and screening power has shown that our AGL-Score has outperformed
other state-of-the-art methods on these evaluations which are the standard
criteria for virtual screening in drug discovery [48].

The combination of these three powerful models gives rise to the MathDL
model which is expected to be one of the most accurate binding affinity
predictors available in the literature. Indeed, the MathDL model achieved
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Figure 4: A schematic illustration of the MathPose approach for 3D structure
generation from a given input 2D SMILES string.

the top performances on the affinity ranking and free energy prediction for
Cathepsin S (CatS) inhibitors in the Drug Design Data Resource (D3R)
Grand Challenge 4 (GC4), a worldwide competition series in the computer-
aided drug design [31]. Also, MathDL model was the competitive scoring
functions on the binding energy predictions for beta-secretase 1 (BACE)
compounds in GC4 [31]. The outline of the MathDL model is depicted in
Figure 3.

2.1.4. MathPose for 3D structure prediction In our recent work, we
have successfully designed an AGL-Score model to achieve the best perfor-
mances in docking power metrics which validate the scoring function’s abil-
ity to identify the “native pose” from the computer-generated poses [48].
Specifically, on the CASF-2007 benchmark, [60] our AGL-Score achieves
84% accuracy on the docking power assessment [48]. The second best scor-
ing function on this benchmark is from GOLD software with ASP fitness
score (82%) [60]. Our scoring function is still the top performer on dock-
ing power test of CASF-2013 benchmark [61] with the accuracy as high as
90% [48], followed by the machine learning based-scoring function ΔvinaRF20

(87%) [62]. With such promising results, it is expected that the replacement
of the single AGL-Score model by intricate MathDL scoring function will
certainly improve the quality of pose ranking. This results in the MathPose
model whose framework is outlined in Figure 4. In our MathPose, besides
the SMILES string of the interested ligand L, we select a set of complexes
having similar binding sites to the one the ligand L can bind to. A pool of
nearly 1000 poses for the ligand L is generated by several common dock-
ing software, namely Autodock Vina [63], GOLD [64], and GLIDE [65].
Additionally, three docking software packages are utilized to re-dock the
complexes in the selective data set to form at least 100 decoy complexes per
input. Then, our MathDL will be trained on these decoy sets to learn the cal-
culated root mean squared deviation (RMSD) between the decoy and native
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structures. The trained MathDL will be applied to pick up the top-ranked
pose for the given ligand L.

2.2. The analysis of generated compounds

The 2D similarity analysis between generated compounds and their seeds
To investigate how “novel” our generated compounds are from their seeds,
a similarity analysis was performed on them. The 2D molecular SMILES
strings of the generated molecules were also transformed into 2D molecular
fingerprints and then the similarity scores between the fingerprints of the
generated molecules and their seeds were calculated. The fingerprints were
the same ones used in the DNN predictors, a combination of ECFP and
MACCS molecular fingerprints. The criteria used for the similarity scores
was the Tanimoto coefficient [66]. The fingerprint transformation was also
conducted by RDKit [32].

The k-means clustering analysis of generated compounds Cluster analysis
or clustering is the task of grouping a set of objects in such a way that objects
in the same group are more similar to each other than to those in other
groups. It has already been widely applied to protein conformation analysis
[67, 68, 69]. To present the diversity of our generated active compounds,
k-means clustering analysis was performed. The input features were the
same molecular fingerprints discussed above, and the k-means clustering was
conducted by scikit-learn [70]. For each cluster, the center was extracted to
represent the cluster.

3. Results

To examine and validate the performance of our proposed GNC for gen-
erating new compounds for drug targets, we consider two specific targets,
namely Cathepsin S (CatS) set and Beta-Secretase 1 (BACE). These two
targets appeared in the D3R Grand Challenges, worldwide competition se-
ries in computer-aided drug design [71, 31], with components addressing
pose-prediction, affinity ranking, and free energy calculations.

Both CatS and BACE are potential targets for significant human dis-
eases. CatS constitutes an 11-member family of proteases involved in pro-
tein degradation. It is highly expressed in antigen-presenting cells, where
it degrades major histocompatibility complex class II (MHC II)-associated
invariant chain. CatS is a candidate target for regulating immune hyper-
responsiveness, as the inhibition of CatS may limit antigen presentation
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[72, 73]. BACE is a transmembrane aspartic-acid protease human protein en-
coded by the BACE1 gene. It is essential for the generation of beta-amyloid
peptide in neural tissue [74], a component of amyloid plaques widely be-
lieved to be critical in the development of Alzheimer’s, rendering BACE an
attractive therapeutic target for this devastating disease [75]. The rest of this
section is devoted to the utilization of the proposed GNC on the exploration
of new potential drugs for CatS and BACE targets.

3.0.1. Faithful validation of generative network on CatS and ZINC
data sets To assess the performance of the autoencoder on the CatS data
set, we converted all SMILES strings in the data set into the canonical form
using RDKit [32], and kept only the strings with length no more than 60.
This was done because the decoder network was designed to produce only
SMILES strings of length at most 60. This left us with 1858 of the 2847
molecules in the CatS training set. After feeding these molecules through
the network, 1427 (76.8%) yielded valid SMILES strings, with none being
identical to the original.

We also tested the performance of the autoencoder on a larger data set
of 1 million molecules, randomly chosen from the same subset of the ZINC
15 [76] data set from which the training samples were drawn. The training
set produced from the ZINC 15 data set contains 192,813,983 molecules,
26,880,000 of which were previously seen by the autoencoder during train-
ing. From these 1 million molecules, 994,219 (99.4%) yielded valid SMILES
strings, and 2,724 (0.27%) SMILES strings were reproduced exactly. A high
valid molecule generation rate and a low reconstruction rate enable us to
generate meaningful compounds with highly diverse chemical properties.

3.1. BACE

3.1.1. Data preparation To enable the proposed GNC to generate
meaningful BACE inhibitors, one needs to supply it with seed molecules
closely related to the BACE target. To this end, we combine all BACE in-
hibitors provided in the D3R Grand Challenge 4 (https://drugdesigndata.
org/about/grand-challenge-4) with the BACE ligands having the reported
binding affinity on the ChemBL database (https://www.ebi.ac.uk/chembl/).
That results in a BACE data set of 3916 compounds with binding affinities
ranging from −2.84 kcal/mol to −13.22 kcal/mol. If one sets −9.56 kcal/mol
as a threshold to label a compound as active, that BACE data set has 1231
active ligands. The distribution of binding affinity in the BACE data set is
shown in Figure 5a. That figure reveals that most of the molecules in our

https://drugdesigndata.org/about/grand-challenge-4
https://drugdesigndata.org/about/grand-challenge-4
https://www.ebi.ac.uk/chembl/
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Figure 5: Distributions on the BACE set. (a) The distribution of the ex-
perimental binding affinities in the BACE training set; (b) The similarity
distribution of new molecules compared with their seeds in the BACE set.
(c) The distribution of new BACE molecules’ binding affinities predicted by
2D fingerprint network model 2DFP-DNN.

collected data set having affinities between −10 kcal/mol and −7 kcal/mol.
Also, there are more BACE inhibitors with binding strength less than −10
kcal/mol than ones having binding affinity higher than −6 kcal/mol.

3.1.2. Structure generation By feeding the BACE data set of 3916
compounds to the generative network, as many as 2.8 million valid com-
pounds were generated by supercomputers in less than one week. To indicate
how “novel” our generated compounds are from their seeds, the similarity
score between each generated compound and its seed is calculated. The sim-
ilarity score distribution is illustrated in Figure 5b. It is revealed from the
figure that the similarity scores of the generated compounds have a broad
range varying from 0.15 to 1.00. This means that our generated compounds
cover a very large chemical space. A similarity score being 1 indicates the
generated compound is exactly the same as the seed. Fortunately, this is
very rare, happening only 9 times in all 2,727,379 generated compounds. In
most cases, the similarity scores are very low with an average value of 0.34,
implying the wide range of diversity among the generated samples.

To further verify that the generated compounds are really unique from
the seeds, a seed molecule and several generated compounds are shown in
Figure 6. In which, Figure 6a depicts a seed, Figure 6b illustrates the most
similar compound generated from the seed, Figure 6c plots a compound
with a medium similarity score of 0.34, and Figure 6d presents the most
different one. One can realize that even the most similar one with a similarity
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Figure 6: The illustration of similarity between a seed molecule in the BACE
set and some generated compounds: (a) The seed; (b) The most similar
compound generated from the seed (similarity score=0.50); (c) A compound
with a medium similarity score of 0.34; (d) The most different one from the
seed (similarity score=0.23).

score as high as 0.50, chemical structures are still quite different due to the

replacement of the fused ring by a carbon chain (see Figures 6a and 6b).

3.1.3. Binding affinity screening by 2DFP-DNN To efficiently select

the potential drug candidates, we carry out the 2D fingerprint DNN model

discussed in Section 2.1.2 to predict the binding affinities of more than 2.7

millions compounds. Figure 5 illustrates those predicted energies. From Fig-

ure 5, one can notice that the predicted affinities of the generated BACE

compounds are distributed in a Gaussian manner. This result is probably

due to the Gaussian-like distribution of similarity scores between generated

ones and their corresponding seeds depicted in Figure 5b.

The range of their binding affinities of predicted molecules is widely

spread from −3.89 kcal/mol to −10.20 kcal/mol, confirming that large chem-

ical space is covered. The peak is at −7.1 kcal/mol, which means about half
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of the generated compounds have binding affinity smaller than−7.1 kcal/mol.

Among this first half with the binding affinity smaller than −7.1 kcal/mol,

5 compounds have predicted binding affinity smaller than −10 kcal/mol

which indicates they are promising drug candidates. Moreover, there are

2130 compounds with binding affinity smaller than −9 kcal/mol, and 178250

compounds with the binding affinities smaller than −8 kcal/mol. In this

work, we use a common binding affinity threshold, i.e. −9.56 kcal/mol, to

screen out high-likely less active compounds. As a result, we are left with 99

generated inhibitors having the lowest binding energy in term of kcal/mol.

It is noticed that the 2D fingerprint DNN model for binding affinity

prediction only relies on the ligand information without the involvement of

target proteins. Therefore, its accuracy is not as high as its 3D counterparts

(e.g. MathDL) [44, 31] in which the interactions between the target binding

site and the interesting compounds are fully incorporated. However, it is

projected to be time consuming when carrying out those 3D-based binding

affinity predictor models on a large pool of molecules. Thus, in this work,

we make use of the advantage of simple calculations in the 2D-based models

to filter out a large number of compounds with highly predicted affinities.

3.1.4. Clustering analysis of selected compounds To illustrate how

diverse our generated active compounds are, clustering analysis was per-

formed on the 99 generated compounds with the most highly predicted bind-

ing affinities discussed in Section 3.1.3. By carrying out k-means clustering

method, one can find 6 clusters in our generated set, and the center of each

cluster is shown in Figure 7.

Statistically, the sizes of these 6 clusters are 7, 38, 10, 7, 12, and 25,

respectively. Inside these 6 clusters, the average similarity scores to the cen-

ters are 0.69, 0.58, 0.62, 0.66, 0.63, and 0.67, respectively, which indicates

the compounds in the same cluster are relatively similar. By contrast, the

similarity scores between different clusters are much lower. Specifically, the

similarity score between these 6 cluster centers are only around 0.40; thereby,

implying the high diversity in our generated compounds.

Among these 6 clusters, cluster 2 is the biggest one with 38 compounds.

Moreover, it contains the largest numbers of the highly predicted binding

affinities. Particularly, cluster 2 has 5 compounds with predicted binding

affinities smaller than −10 kcal/mol. Since the compounds in the same clus-

ter are similar, it suggests that other compounds in cluster 2 may also have

a high potential to become drugs. SMILES strings of all 99 compounds in 6

clusters are included in Table S1 in Supporting Information.
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Figure 7: The center of the 6 clusters found in our BACE generated set.

3.1.5. Binding affinity screening by MathDL The DNN model us-
ing the 2D fingerprint features, as discussed in Section 3.1.3, only relies
on the ligand information and lacks the receptor environment. As a result
its reliability is not guaranteed when identifying the most promising drug
candidates. It has been shown that structure-based models often outper-
form the ligand-based models in diverse datasets [44, 30, 31]. Therefore, our
MathDL model, discussed in Section 2.1.3, is utilized to re-rank the com-
pounds picked out by 2DFP-DNN models. The MathDL model is trained on
the BACE data set of 3916 compounds whose 3D structures are generated
by MathPose mentioned in Section 2.1.4.

The Kendall’s Tau coefficient (τ) and Pearson correlation coefficient (Rp)
of the cross-validation on the training data are 0.608 and 0.797, respectively.
These accuracy evaluations guaranteed a well-trained MathDL model on
that specific training set. A generated compound set of 99 molecules are
fed into MathPose to obtain 3D structures provided in File S1 in Support-
ing Information. All of them were docked to the protein extracted from a
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Figure 8: Top 4 generated BACE compounds having the lowest bind-
ing affinities predicted by MathDL model. Their 3D structures were con-
structed by MathPose. Their IDs under our naming system and the pre-
dicted energies are, respectively (a) BACE gen 35 (−8.263 kcal/mol); (b)
BACE gen 66 (−8.258 kcal/mol); (c) BACE gen 29 (−8.202 kcal/mol); and
(d) BACE gen 25 (−8.20 kcal/mol). Their SMILES strings are provided in
Table S1, and their corresponding 3D structures are included in File S1. All
of those molecules were docked to protein extracted from the complex with
PDB ID 3dv5.

complex with PDB ID 3dv5. Their binding affinities are, then, predicted by

the aforementioned trained MathDL model. It is noticed that binding affin-

ity values of 99 generated molecules predicted by MathDL are higher than

ones estimated by the 2D fingerprint DNN approach in term of kcal/mol.
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Figure 9: The three distributions about the CatS set. (a) The distribution of
experimental binding affinity in the CatS data set; (b) The distribution of
similarity scores to their seeds in the CatS generated set. (c) he distribution
of the CatS generated set’s binding affinities predicted by 2D fingerprint
network model 2DFP-DNN.

Specifically, based on MathDL predictor, the lowest binding energy is −8.263
kcal/mol, the highest energy is −5.972 kcal/mol, and the averaged energy
over 99 compounds is −7.33 kcal/mol. Figure 8 illustrates the binding poses
of top four ligands, namely BACE gen 35, BACE gen 66, BACE gen 29,
and BACE gen 25, in term of affinity. The predicted energies of those top
4 molecules are −8.263 kcal/mol, −8.258 kcal/mol, −8.202 kcal/mol, and
−8.20 kcal/mol, respectively.

Despite having nearly the same values of predicted affinities among those
top 4 compounds, they are quite different molecules judged by their 2D sim-
ilarity scores. Specifically, among those 4 compounds, BACE gen 35 and
BACE gen 66 are the most similar structures but their similarity score is
as low as 0.265. In addition, BACE gen 29 and BACE gen 25 are the most
dissimilar compounds with 2D singularity score being 0.11. Generating very
low binding affinity compounds with diverse chemical formulas is an im-
portant goal for the pre-clinical stage since that will enhance the chance of
selecting promising drug candidates with low risk of having a side effect.
Obtaining top and disparate molecules demonstrates the capacity of our
proposed GNC in capturing the wide range of chemical space.

3.2. CatS

3.2.1. Data preparation Similar to the BACE target, CatS inhibitors
were presented in the D3R grand challenges. Thus, these compounds (n =
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Figure 10: Illustration of similarity between a seed in the CatS set and
some generated compounds: (a) The seed; (b) The most similar compound
generated from the seed (similarity score=0.45); (c) A compound with a
medium similarity score of 0.31; (d) The most different one from the seed
(similarity score=0.18).

593) are used as seeds to produce new CatS molecules. Other CatS com-

pounds reported in the ChemBL database are also included in our seeds.

In total, we collected a data set of 2847 compounds. The binding affinity of

these molecules ranges from −4.72 to −14.33 kcal/mol. As with the BACE

data set, we chose −9.56 kcal/mol as the threshold for the active compound

selection. With this threshold, 1461 of the 2847 compounds in our seeds are

active. The distribution of binding affinity in our collected CatS data set is

shown in Figure 9a.

3.2.2. Structure generation Using the 2847 compounds in the CatS

collected set as seeds and feeding them into the generator network, we gener-

ated 1000 distinct compounds for each seed, for a total of 2,847,000 generated

compounds. However, there was some duplication among the compounds

generated by different seeds, resulting in only 2,080,566 distinct compounds

being generated. To determine the novelty of our generated network, the

similarity score between each generated compound and its seed is evaluated

and depicted in Figure 9b.
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Similar to the results from the BACE data set, the similarity scores of the
generated compounds have a broad range from 0.06 and 1.00. A similarity
score of 1.00 was obtained only 12 times in all 2,847,000 generated molecules.
In most cases, the similarity scores are very low with an average value of
0.34, indicating there is a lot of diversity among the generated samples.
To further verify that the generated compounds are really different from
the seeds, a seed molecule and several generated compounds are shown in
Figure 10. In which, Figure 10a is one seed, Figure 10b is the most similar
compound generated from the seed with a similarity score of 0.45, Figure
10c is the compound with a medium similarity score of 0.31, and Figure
10d is the most different one with a similarity score of 0.18. Obtaining low
similarity scores between generated compounds and feeding target is one of
the desired features in our GNC model in which the novelty of computer-
generated molecules is emphasized.

3.2.3. Binding affinity screening by 2DFP-DNN Here, we carry out
the 2DFP-DDN model to filter out the “bad” generated CatS molecules
by the binding affinity criterion. Similar to the BACE compound screening
conditions, we use an affinity threshold at −9.56 kcal/mol. Specifically, any
molecules with predicted energy higher than that threshold are left out. As
a result, we selected 61,571 potentially “good” compounds.

Furthermore, we are interested in the overall distribution of the binding
affinity of the generated compounds. Figure 9c depicts the distribution of the
predicted affinity for all 2,080,566 molecules. The distribution is fairly close
to a Gaussian distribution. Consistent with the similarity score distribution
above, the range of their binding affinity prediction is very large, from −4.61
kcal/mol to −12.12 kcal/mol, confirming that large chemical space is cov-
ered. The mean binding affinity is −7.62 kcal/mol. Among the compounds
with the smallest predicted binding affinity, 21,283 compounds have bind-
ing affinity smaller than −10 kcal/mol, 510 compounds have binding affinity
smaller than −11 kcal/mol, and 1 compound has a binding affinity smaller
than −12 kcal/mol. These are potentially very highly active compounds.
However, as discussed in Section 3.1.3, there is no free lunch in the develop-
ment of binding prediction models. 2DFP-DNN predictor is extremely fast
in training millions of molecules. However, its accuracy is less competitive
in comparison to 3D-based models such as MathDL. Thus, we still utilize
the MathDL scoring function to select the most promising drug candidates.

3.2.4. Clustering analysis of selected compounds To illustrate how
diverse our generated compounds are, clustering analysis were performed
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Figure 11: The center of the 6 clusters found in our CatS generated set.

to the 61,571 selected compounds generated by our model. The 6 clusters

are found in our generated set, and the center of each cluster is shown in

Figure 11. The sizes of these 6 clusters are 7077, 13059, 15048, 9221, 6884,

and 10282 respectively. Inside these 6 clusters, the average similarity scores

to the centers are 0.37, 0.34, 0.34, 0.39, 0.41, and 0.36 respectively, which

indicates that there is a significant variation among compounds in each

cluster. In addition, the average binding affinity of each cluster is −10.01,

−9.89, −9.91, −9.98, −9.92, and −9.93 kcal/mol respectively. Unlike the

BACE data set, there is not much difference in the average energies between

different clusters. Therefore, it is expected to obtain highly potential drug

candidates with dissimilar physical and biological chemical properties.

3.2.5. Binding affinity screening by MathDL MathDL here was

trained with 2847 seeds used in the generator network. The Pearson’s corre-

lation coefficient and Kendall’s Tau coefficient on the 10-fold cross-validation

(CV) of the training set was found to be Rp = 0.746 and τ = 0.577, re-

spectively. The promising CV performance ensures a well-trained machine

learning model. Furthermore, the reliability of the MathDL models on the
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Figure 12: Four generated CatS compounds having the lowest binding
affinities predicted by MathDL model. Their 3D structures were pre-
dicted by MathPose. Their IDs under our naming system and the pre-
dicted energies are, respectively (a) CatS gen 195 (−11.681 kcal/mol); (b)
CatS gen 968 (−11.608 kcal/mol); (c) CatS gen 902 (−11.540 kcal/mol);
and (d) CatS gen 228 (−11.536 kcal/mol). Their SMILES strings are pro-
vided in Table S2, and their corresponding 3D structures are included in
File S2.

affinity ranking of the CatS inhibitors has been shown in the Grand Chal-

lenges 3 [30] and 4 [31] where our models were ranked 1st place among more

than 50 teams from over the world.

To further validate the generated molecules, the top 1050 compounds

in term of energy indicated by 2DFP-DNN network are re-ranked by the
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MathDL model. To get the input ready for the structure-based model, the
3D poses of those 1050 molecules are predicted by our MathPose. Under
the 2DFP-DNN predictor, the average binding affinity of those 1050 com-
pounds is −11.05 kcal/mol and their affinities range from −10.693 kcal/mol
to −12.159 kcal/mol with standard deviation being −0.213 kcal/mol. On
the other hand, by utilizing the MathDL model, the average binding affinity
of the selected molecules is −9.27 kcal/mol with a range between −7.008
kcal/m and −11.681 kcal/mol, and the standard deviation is found to be
−0.736 kcal/mol. The Pearson’s correlation coefficient on the energy pre-
diction for the generated compounds by 2DFP-DNN and MathDL is as low
as 0.112 which indicates the disagreement between those two models. That
discrepancy was also observed when predicting the affinity ranking of the
CatS molecules in the Grand Challenges 4 where the structure-based model
MathDL outperformed its ligand-based counterpart. Therefore, MathDL’s
predicted energies are chosen to select the promising drug candidates among
the computer-generated compounds.

The 3D structures of top 4 compounds in term of affinity, namely
CatS gen 195, CatS gen 968, CatS gen 902, and CatS gen 228, are plotted
in Figure 12. Their reported affinities are, respectively, −11.681 kcal/mol,
−11.608 kcal/mol, −11.540 kcal/mol, and −11.536 kcal/mol. Despite sim-
ilarly predicted affinities, their structures are quite dissimilar from each
other. Specifically, the highest similarity score is 0.297 obtained between
CatS gen 968 and CatS gen 902 molecules. While the lowest similarity score
is 0.11 evaluated between CatS gen 902 and CatS gen 228. The statistical
information again confirms the ability of our proposed GNC to cover large
chemical space.

4. Discussions

Since the chemical space is huge, there is a need to generate a wide variety of
novel compounds for all kinds of properties. This work introduces the GNC
to generate novel molecules, predict their druggable properties, and finally
pick up the drug candidates that fulfill the threshold for drug properties
such as binding affinity. We discuss a number of issues concerning generative
networks.

4.1. Latent space design of new compounds

Latent space information can be effectively modified by a variety of methods.
In the current work, we propose three approaches, including 1) randomized
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output, 2) controlled output, and 3) optimized output. The first approach
can certainly create new molecules. We note that some of the new latent
space configurations cannot be interpreted by the decoder.

The second approach is designed to discriminate potentially drug-like
molecules from potentially inactive ones. Currently, we found that machine
learning models built from latent space representations are highly accurate.
Therefore, the proposed approach is potentially very useful. Nonetheless,
the performance of this method depends crucially on the quality of training
datasets. Additionally, for this approach to effectively control the drugga-
bility of the generated compounds, the decoder must be intensively trained
with tens of millions of molecules and have a near-perfect reconstruction
rate. Achieving a high reconstruction rate for a diverse class of test com-
pounds is a challenging issue in the design of molecular autoencoders. This
issue is under our consideration.

The third approach is introduced to create new compounds with desir-
able druggable properties. Similarly to the last method, the success of this
approach depends on the quality of training datasets and machine models
and the reconstruction rate of the decoder. Additionally, reference selection
for each drug property is another important issue. It depends on our current
understanding and criteria of drug-like molecules. However, this approach is
very promising and will be an important direction for future studies.

Finally, it is noted that the third approach does not depend on the seed
configuration. Therefore, its initial latent space distribution can be chosen
randomly. As such, this method can be very fast and efficient.

4.2. Generator efficiency

One challenge traditional pharmaceutical industry faces is that designing
new drug candidates is very time-consuming. This low efficiency obviously
can not tackle a variety of health crises human being currently encounters,
such as drug-resistant infections and fast mutation of viruses, which requires
lots of new drugs in a very short time.

Computers are typically faster than human beings. Therefore, generating
new drugs by computers is a potential solution. Such as in our case, just using
one K20 Nvidia CUDA GPU card, our generator network can generate 2.08
million and 2.8 million novel compounds for the CatS and BACE targets in
less than one week, such task is far beyond human power. Moreover, such
process is fully automatic and even does not need human supervision. So,
such automatic generators can provide us a huge drug-candidate database
rather than some sporadic ones. What is more, just we already showed in
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this work, combining this generator with reliable automatic DNN predictors,
the bulk of drug candidates can be further screened based on the properties
predicted by automatic predictors. This whole automatic workflow should
be a promising future of the pharmaceuticals industry.

4.3. Chemical spaces generated by generators

Our generated compounds are originated from their seeds, some known lig-
ands binding to CatS and BACE from PDBbind database. Thanks to the
magic of the autoencoder including some random source, these generated
compounds are truly novel and quite far from their seeds: no matter for
CatS and BACE, the average similarity scores to the seeds are just around
0.3. This means the two sources of random works and the generator creates
novel compounds rather than just playing some “copy” games.

More importantly, these generated compounds spread in huge chemical
space, this means our generated compounds cover a large range of chemical
properties, so it is more possible to hit potential drug candidates. First, the
similarity scores to the seeds have a large range, for BACE it is 0.2 to 0.6,
for CatS, it is 0.15 to 0.65. Second, our predicted binding affinities also have
a wide range, from −5 kcal/mol to −10 kcal/mol or even to −11 kcal/mol.
All in all, the generator is powerful, originating from seeds and but cover a
huge chemical space far away from the seeds.

4.4. Faith vs novelty

The random noise regulated latent space we designed here can generate lots
of novel compounds far from their seeds, this is due to its design: random
sources are included in the model. However, in other words, this generator
is not faithful, since the output is quite different from the input. Such ar-
chitecture is good for our purpose – what we want is to create broad new
compounds from the seeds rather than faithful ones.

However, in another scenario, faith is highly needed. Griffiths et al. [77],
Jin et al. [78], Kusner et al. [79] and Dai et al. [80] perform Bayesian opti-
mization in the latent space to obtain compounds with desired properties.
We have also designed controlled latent space and optimized latent space in
the present work. In these cases, outputs should faithfully reflect the latent
space. Otherwise, optimization in the latent space could not be faithfully
passed to the output. The reconstructing accuracy is a very critical eval-
uation. Much effort has already put to reinforce reconstructing accuracies,
such as grammar VAE [79], syntax-directed VAE [80] and junction tree VAE
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[78], to achieve a reconstructing accuracy as high as 0.76. In comparison, the
VAE we applied only has a reconstructing accuracy of 0.20. It means that
our outputs are always new compounds. However, our new gated recurrent
unit (GRU)-based autoencoder can achieve a 99% reconstructing accuracy,
which enables us to carry out desirable design in the latent space. The detail
of this work will be published elsewhere.

4.5. Chemical spaces of predicted high binding affinity
compounds

Using our predictors, high binding affinity compounds can be screened. So
one concern is whether these high binding affinity compounds spread in
a large chemical space or they are similar to each other and in a small
range. According to our results, even the numbers of high binding affinity
compounds are only 1050 and 99 for CatS and BACE respectively, they are
still quite different. In our clustering analysis, these high binding affinity
compounds are classified into 6 clusters, the similarities between clusters
are only around 0.4.

The large chemical space covered by the high binding affinity compounds
is beneficial to drug design. First, a good drug not only depends on binding
affinity but also depends on other properties such as toxicity, log P, log
S, clearance, etc. A large chemical space means these high binding affinity
compounds have different other properties, so there is more chance for them
to pass the screenings based on other properties. Additionally, more types
of related drugs are easier to tackle the fast mutation of viruses.

5. Conclusion

In our work, a generative network complex (GNC) is introduced. We pro-
pose three latent-space techniques, including randomized output, controlled
output, and optimized output to generate novel and potential compounds.
Additionally, their physical and chemical properties are predicted by a two-
dimensional (2D) fingerprint-based deep learning predictor, and potential
drug candidates are preliminarily screened by predicted properties. More-
over, for promising drug candidates, their 3D poses associated with specific
protein targets are predicted by our MathPose, one of the most accurate pose
prediction schemes according to D3R Grand Challenges, a worldwide com-
petition series in computer-aided drug design [31]. Finally, more accurate
property estimations based on the 3D poses are performed by our MathDL,
a advanced mathematics-based deep learning network, leading to new drug
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candidates with the desirable drug properties. This automated platform has
been used to generate 2.08 million new drug candidates for Cathepsin S and
2.8 million novel compounds for BACE. For 1050 potential drug candidates
for CatS and 99 potential drug candidates for BACE, 3D poses associated
with their target proteins have been created to further evaluate their drug-
gable properties. Our framework is designed to create new drugs in silico, so
as to save time and reduce cost in drug discovery. Designing gated recurrent
unit (GRU)-based autoencoders with near perfect reconstruction accuracies
is under our consideration to achieve robust latent space drug design.

Supplementary materials

Supplementary materials are available upon request for potential drug can-
didates for Cathepsin S and BACE targets.

TableS1.csv A list of SMILES strings and predicted binding affinities
of 99 potentially active compounds for the BACE target.

TableS2.csv A list of SMILES strings and predicted binding affinities
of 1050 potentially active compounds for the CatS target.

Additional supplementary materials are available upon request for po-
tential drug candidates for Cathepsin S and BACE targets (near 70 gigabytes
in size).

FileS1.zip Zip file of 3D structure information of 99 selectively gener-
ated BACE compounds and their receptors.

FileS2.zip Zip file of 3D structure information of 1050 selectively gen-
erated CatS compounds and their receptors.
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Relation between the wiener index and the Schultz index for several

classes of chemical graphs. Croatica Chemica Acta, 66(2):345–353, 1993.

MR1169298

[56] Dusanka Janezic, Ante Milicevic, Sonja Nikolic, and Nenad Trinajstic.

Graph-theoretical matrices in chemistry. CRC Press, 2015. MR3381136

[57] Nobuhiro Go, Tosiyuki Noguti, and Testuo Nishikawa. Dynamics of

a small globular protein in terms of low-frequency vibrational modes.

Proceedings of the National Academy of Sciences, 80(12):3696–3700,

1983.

[58] Ali Rana Atilgan, SR Durell, Robert L Jernigan, Melik C Demirel,

O Keskin, and Ivet Bahar. Anisotropy of fluctuation dynamics of pro-

teins with an elastic network model. Biophysical Journal, 80(1):505–

515, 2001.

http://www.ams.org/mathscinet-getitem?mr=2121296
http://www.ams.org/mathscinet-getitem?mr=3247713
http://www.ams.org/mathscinet-getitem?mr=2671586
http://www.ams.org/mathscinet-getitem?mr=1169298
http://www.ams.org/mathscinet-getitem?mr=3381136


Generative network complex (GNC) for drug discovery 275

[59] Ivet Bahar, Timothy R Lezon, Lee-Wei Yang, and Eran Eyal. Global
dynamics of proteins: bridging between structure and function. Annual
Review of Biophysics, 39:23–42, 2010.

[60] Tiejun Cheng, Xun Li, Yan Li, Zhihai Liu, and Renxiao Wang. Com-
parative assessment of scoring functions on a diverse test set. Journal
of Chemical Information and Modeling, 49(4):1079–1093, 2009.

[61] Yan Li, Li Han, Zhihai Liu, and Renxiao Wang. Comparative assess-
ment of scoring functions on an updated benchmark: 2. evaluation
methods and general results. Journal of Chemical Information and
Modeling, 54(6):1717–1736, 2014.

[62] Cheng Wang and Yingkai Zhang. Improving scoring-docking-screening
powers of protein–ligand scoring functions using random forest. Journal
of Computational Chemistry, 38(3):169–177, 2017.

[63] Oleg Trott and Arthur J Olson. Autodock vina: improving the speed
and accuracy of docking with a new scoring function, efficient opti-
mization, and multithreading. Journal of Computational Chemistry,
31(2):455–461, 2010.

[64] Gareth Jones, Peter Willett, Robert C Glen, Andrew R Leach, and
Robin Taylor. Development and validation of a genetic algorithm for
flexible docking. Journal of Molecular Biology, 267(3):727–748, 1997.

[65] Richard A Friesner, Jay L Banks, Robert B Murphy, Thomas A Hal-
gren, Jasna J Klicic, Daniel T Mainz, Matthew P Repasky, Eric H Knoll,
Mee Shelley, Jason K Perry, et al. Glide: a new approach for rapid,
accurate docking and scoring. 1. Method and assessment of docking
accuracy. Journal of Medicinal Chemistry, 47(7):1739–1749, 2004.
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